
XAL Workshop 2010
Open Discussion
• Start from scratch with parallel migration
• Fresh repository (SourceForge)
• Source Code Control (Subversion)

• Structure of repository
• Core and Site Specific Sub-projects (Devices, Applications)
• Individual Doorkeepers for packages and applications
• Branches for Core only (Development, Pre-release and Production)
• Mailing List and Blog

• Localization Support (localized resources)
• Quality Control and Regression Testing
• Coding standards document (documentation, formatting)

• Sample files
• Online Help

• Task Management (feature requests, active projects)
• Accelerator Optics File

• XML Accelerator Schema for validating XML
• Stylesheet for rendering Optics File

• Database Schema Variations
• driver (configuration file)
• table and column naming (site specific name mapping)
• structure (site specific SQL adaptor)
• declare the required database schema
• post the current database schema used by XAL

• Current to Field Mapping?
• Alignment
• Organization of the source files
• Package Naming (preface package name with “xal”)
• Project Name: (Open XAL)
• Applications should allow for site variations in database structure
• Easy for physicists to adopt

• Math toolbox
• Easy access to modeling protocol
• Efficient machine experiment support
• Realistic machine simulation
• Full event reconstruction offline



XAL Core
• Application Framework
• Tools (possibly split)
• XAL Online Model
• Machine Hierarchy (site specific versions of devices)
• XAL Tools (Lattice Generator, Widgets)
• Channel Access
• Ant Build System



Coding Standards
• Modern Java Convention

• http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
• Constants upper case with underscores separating words
• Variables and Methods use mixed case (first letter lower case)
• Packages should be strict lower case
• Files organization should match package organization
• Two blank lines between methods, three blank lines between classes

• Code should be readable (descriptive variable and method names)
• Self documenting
• Descriptive variable and method names
• Use line and character spacing for clarity

• Java Bean accessors and setters
• Literals used more than once should be assigned to a constant
• Access should be as hidden (private) as possible
• API should use interfaces (use List not ArrayList) as possible
• All packages, classes and methods should have Java Doc
• No generated source code (javacc?)
• No IDE specific files or dependencies
• Help files either in plain text or HTML + CSS
• Header should identify author/care taker contact

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

